

Infrastructure Requirements of Advanced-Technology Vehicles

Marianne Mintz May 10, 2001

Infrastructure Includes

- Right-of-way
- Vehicle/component manufacturing, assembly, and distribution
- Vehicle sales and service
- Fuel production and distribution

Each of Which May Be Examined in Terms of

- Cost
- Energy use
- Criteria pollutant emissions
- Greenhouse gas emissions
- Safety

ANL Has Estimated Fuel Infrastructure Costs for Several Combinations of Propulsion Systems and Resources

Boundaries of This Presentation

- Mid to long term (2020 and 2030)
- Light-duty vehicles
- Capital costs of fuel production and distribution infrastructure (excluding exploration)
- Technically feasible propulsion systems with potential for substantial improvement over conventional internal combustion engine fuel efficiency (hybrids and fuel cells)
- Unconventional motor fuels (ethanol, methanol, and hydrogen)

Advanced-Technology Fuel/Propulsion Combinations Considered

Fuel Cell (FC) Vehicles

- Gaseous hydrogen
- Methanol reforming
- Ethanol reforming
- Gasoline reforming
- Diesel reforming

Hybrid Vehicles

- Gaseous hydrogen
- Methanol FC
- Ethanol FC
- Gasoline FC
- Diesel FC

Natural Gas-Based Fuels Could Take Several Paths from "Well" to "Tank"

Natural Gas Has an Extensive In-Place Transmission Infrastructure

And a Track Record of Continually Expanding Transmission Capacity

- New pipelines
- Additional compression

- Looping
- A combination of each

Since the Mid-1990s Transmission Capacity Has Grown > 4 Bcf/d Each Yr

Source: EIA 2001

Yearly Capacity Additions Could Double to 8 Bcf/d Over the Next 3 Yr

Source: EIA 2001

According to EIA, Nearly \$5B Was Spent on Pipeline Expansion in 2000

Expansion Reflects Shifts in the Structure of the Industry and Its Resource Base

- Increased production in deep-water Gulf of Mexico and in Western and offshore Eastern Canada
- Reduced production in mature provinces
- Shippers seeking greater access to alternate sources of supply
- Producers seeking greater access to nontraditional markets (market integration)
- Increased use for power generation with resulting shifts in seasonal demand patterns

The Natural Gas Pathway Also Includes Extensive Storage Facilities

At the end of 1998 there were 410 underground natural gas storage sites in the United States

Today Ethanol Moves Mainly by Truck and Rail; Pipelines Require Higher Volumes

Methanol Also Moves Mainly by Truck from Ports to Terminals & Service Stations

Outlook for Non-Petroleum Motor Fuels Is Mixed

- No obvious impediment to increasing capacity of existing infrastructure
 - Emissions regulations
 - Capital availability
- Competing demands could limit availability and/or bid up prices
- Development of new infrastructure, on a large scale, could be costly

Key Features of EIA's Current Natural Gas Forecast

- Demand grows to 32 tcf in 2015, 34 tcf in 2020
- Prices drop after 2001, then increase slowly to about \$3.10 (1999 \$/mcf) in 2020
- Imports increase to about 5 tcf in 2020
- Steady prices and lower drilling costs increase reserve additions and production
- Technology improvements limit E&P cost increases

Most Growth in Natural Gas Demand Comes from Power Generation. Is This Likely?

Discoveries Per Exploratory Gas Well Have Been Growing Since the Mid-1980s

Will there be sufficient North American natural gas production to supply a large-scale shift to natural-gas-based motor fuels?

Demand for Non-Petroleum Motor Fuel Was Examined for Two Market Penetration Cases

MPG Could Be 1.4-2.75 Times Better Than the Base Vehicle, Depending on Option and Success of Technology Development

Source: GAPC et al. 2001

Despite Efficiency Advantages, H2 Options Are Very Costly; Alcohols Look Promising

Fuel Infrastructure Costs Depend on Unit Costs and Structure of Pathway Itself

 Unit cost reduction modular, standard design station reformers

- Alternative pathways
 - Thermochemical H2 (solar or nuclear)
 - Gas-to-liquids (not likely for FCVs)
 - Compressed natural gas hybrids

From What We've Learned We Think We Can Now Ask the Right Questions

- Should natural gas be used as a motor fuel?
- If so, what is the best pathway?
- If not, what will be the successor to petroleum motor fuels?